BUILDING THE THIRD DIMENSION USING CONSUMER-MARKET DIGITAL CAMERAS, CAMCORDERS, AND PHONES

Yuan-Fang Wang, Ph.D.*
Professor, Department of Computer Science
University of California
Santa Barbara, CA, USA

Founder
VisualSize Inc.
Goleta, CA

* Research supported in part by contracts and grants from US Army and US Navy
Introduction

- Convergence of
 - Consumer-market cameras, camcorders, cell phones
 - Computational power
 - Storage capability
 - Communication bandwidth (Web)
- Rubber-meets-the-road validation and commercialization of Computer Vision algorithms
 - Over one billion cell phones and another billion digital cameras sold worldwide each year, what cool CV algorithms can be used on them?
Digital photographs record appearance explicitly.

3D objects usually have distinct:
- Appearance
- Structure, and
- Behavior traits

Recovering the structure and behavior traits from mass-market camera pictures:
- Mostly about structure traits in this talk
- Behavior (deformation) is much harder (e.g., behavior modeling of tumors in computer-assisted colonoscopy)
Alternative: Active Range Cameras

- Principles
 - Time of flight
 - Structured light
 - Phase shift detection
 - Laser, LCD
 - ASC, 3DV (Microsoft), PrimeSense (Microsoft Xbox), Canesta
Alternative: Active Range Cameras

- NextEngine ($2,995)
- escan3D ($7,995)
 - Sweeping laser line with triangulation
Active Range Cameras

- Niche markets in the foreseeable future
 - Cost
 - Size
 - Selection
 - Spatial resolution
 - Power consumption
 - Scanning speed
 - Availability of public-domain data
Alternative: Specialized Stereo Video Camera

- Stereo sensors (tyzx)
- Pros: Real-time
- Cons:
 - Narrow-base-line stereo
 - Poor depth resolution
 - No cross validation of 3D depth
 - Bulky, expensive, one-of-a-kind
 - Not consumer-market
Alternative: A Single Photograph

- Photowoosh
- Make3D (http://make3d.stanford.edu/)
 - Expensive, time-consuming off-line learning
 - Manual image marking on-line
 - Qualitative, coarse depth profile with significant error
Our Philosophy

- 3D Inference is an inherently “ill-posed”, inverse problem
 - Many unknowns, not enough constraints
 - Solution 1:
 - Clever algorithms
 - Past experience (learning and inference)
 - Solution 2:
 - Hard data (more images)
- Our claim: hard data trounce clever algorithms
 - Minuscule effort in data collection
 - Readily available computational power and storage space
 - Specificity of information enables practical, robust and efficient CV algorithms
Our Goals

- Consumer-market
- Multiple capabilities (one stop shopping)
- Hardware:
 - No calibration, specialized equipment used
- User:
 - point-shoot-upload, no training or expertise, arbitrary sensing configurations
- Complete systems, fully automated, end-to-end
- Avoid third-party licensing requirements
Visualsize’s Many Solutions

Image stitching
Panorama building
Panorama Engine

Spatially aware Image browsing
PhotoNav3D

Metrology
Metrology Engine

Discrete 3D structures
Dense 3D structures
PhotoModel3D

Structure Motion
Camera motion only
Camera motion + User-specified structure

Camera motion + Sparse structure
Camera motion + Dense structure
A simple, global image registration method

Pixel movements are explained by a single model (homography transformation)

- Rotational only camera motion
- Far-field images
Panorama Building (cont.)

- How to address accumulation of registration error?
- How to estimate intrinsic camera parameters (cameras are not explicitly calibrated)?
Comparison (competitor) Analysis

- Too many (PanoramaFactory, EasyPano, Autopano, Microsoft)
- “Me-too” technology
- Distinction
 - Web-based (Face book application)
 - Part of a complete 3D suite of algorithms, one-stop shopping
When Stitching is not Enough

- CV + CG
 - Structure from motion
 - Discrete snapshots
 - Matching
 - SBA
 - Off-line
 - Batch
 - Dense maps

- Robotics
 - SLAM – simultaneous localization and mapping
 - Continuous video
 - Tracking
 - Extended Kalman Filter
 - On-line
 - Incremental
 - Sparse maps

VisualSize
Camera Motion
More Examples
Ill-posed, inverse problem

No explicit camera calibration for consumer markets

Unknown (partially-known) camera intrinsic parameters (whatever in JPEG header)

Noise in feature locations

Outliers
 • “Obvious” – those violate epipolar constraints
 • “Subtle” – those satisfy epipolar constraints (stereo cannot handle this!)

Numerical stability
Many variables

- 6 (extrinsic) + >4 (intrinsic) for each camera shot
- 3 (x,y,z) for each feature point
Trade-off

- Dense 3D point clouds
 - Slow, less robust
 - High recall, low precision
 - High false-positive, low false-negative

- Sparse 3D point clouds
 - Fast, more robust
 - Low recall, high precision
 - Low false-positive, high false-negative

Key contribution: Robustness + Density + Efficiency
Spatially-Aware Image Browsing

- Recovered camera motion parameters give camera trajectory and view similarity
- Browse an image collection based on spatial adjacency & view similarity of the camera
- More flexible than panorama
- More robust than 3D models
- Cf cooliris.com (pretty graphics, no CV)
Comparison (Competitor) Study

Against Microsoft Photosynth (photosynth.net)

- 27 data sets and over 800 images
 - Indoor and outdoor
 - Near-field, median-field, and far-field
 - Inside-out and outside-in

- How many images are reached (Navigable)

- Beat Photosynth significantly (>40%) in 15
- Beat Photosynth slightly in 2
- Tie Photosynth in 9
- Slightly worse than Photosynth in 1 (22 vs. 23 photos)

http://localhost/photonav3d/summary.html
3D Models

Sparse (point cloud)
- 3D positions of tracked/matched features

Dense (textured surface)
- Depth per pixel

http://localhost/3ddemo/index.php
Comparison (Competitor) Study

- Google Sketchup, AutoDesk Image Modeler
 - Mostly for architectural design
 - Interactive, extensive human interaction
 - Steep learning curve

- PhotoModel3D
 - Any 3D objects
 - Fully automated
 - Point, shoot, upload
Comparison (Competitor) Study

- 3dsom.com, strata.com
- Special registration markers
- Blue screen segmentation
- Silhouette-based volume intersection
- Interactive, extensive human interaction
- Small, complete objects

- PhotoModel3D
- Any 3D objects
- Fully automated
- Point, shoot, upload
Comparison (Competitor) Study

- PhotoModler
 - Special registration markers
 - Manual feature selection and registration
 - Dated two-view stereo analysis (with manual interaction)

- PhotoModel3D
 - Any 3D objects
 - Fully automated
 - Point, shoot, upload
Comparison (Competitor) Study

Photo-to-3D.com
- Commercial services ended (licensing issues?)
- Slow, a simple 5-image VGA data (calc) took more than 1 hour (30 sec for PhotoModel3D)
- Dated stereo pair-wise analysis

PhotoModel3D
- Any 3D objects
- Fully automated
- Point, shoot, upload
- Doesn’t take forever 😊

<table>
<thead>
<tr>
<th>Number of Photos</th>
<th>Estimated computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10 minutes</td>
</tr>
<tr>
<td>3</td>
<td>1 hour</td>
</tr>
<tr>
<td>4</td>
<td>1.5 hours</td>
</tr>
<tr>
<td>5</td>
<td>2 hours</td>
</tr>
<tr>
<td>6</td>
<td>3 hours</td>
</tr>
<tr>
<td>10</td>
<td>8 hours</td>
</tr>
<tr>
<td>20</td>
<td>32 hours</td>
</tr>
</tbody>
</table>
Comparison (Competitor) Study

- **ARC 3D webservice**

- **Outdoor architecture scenes**
 - Mostly planar surfaces
 - Feature-rich façade
 - Partial construction
 - Programs not working
 - Not responding to email
Comparison (competitor) Study

- Bundler (core of UWash/Microsoft Phototourism)
 - http://phototour.cs.washington.edu/bundler/

- Two standard Bundler data sets: Kermit and ET

- On an unloaded PC (Intel Core 2 Duo 2.66GHz, 2G) – only one core is used, no GPU acceleration

<table>
<thead>
<tr>
<th>Runtime</th>
<th># of images</th>
<th>Ours (min)</th>
<th>Bundler (min)</th>
<th>Density (# of 3D points)</th>
<th># of images</th>
<th>Ours</th>
<th>Bundler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kermit</td>
<td>11</td>
<td>1:09</td>
<td>0:44</td>
<td>Kermit</td>
<td>11</td>
<td>8649</td>
<td>623</td>
</tr>
<tr>
<td>ET</td>
<td>9</td>
<td>1:23</td>
<td>0:47</td>
<td>ET</td>
<td>9</td>
<td>8699</td>
<td>514</td>
</tr>
<tr>
<td>Knight</td>
<td>16</td>
<td>1:38</td>
<td>1:02</td>
<td>Knight</td>
<td>16</td>
<td>7381</td>
<td>412</td>
</tr>
</tbody>
</table>
30 data sets

- Indoor, outdoor, partial, 360°

- As few as 5, 6, 7 images, as many as 64, 72, 88

- Uniform trend
 - Bundler is faster (~2x)
 - Ours is denser (~10x)
 - Ours requires orders-of-magnitude less # of photos

Left: sample images
Middle: Bundler’s models
Right: Visualsize’s models
Comparison with PhotoCity

CSE Front Entrance
552 photos
151,366 points
View in 3D

Engineering Library
806 photos
218,724 points
View in 3D
Comparison with PhotoCity

Visualsize:
42 images, 99,937 points

Visualsize:
34 images, 71,072 points
Comparison with Bundler + PMVS2

http://localhost/3ddemo/true3d/comparison/index.html#_PMVS2

- **Bundler** (Version 0.4, April 10, 2010): 0:46
- **PMVS2** (July 13, 2010): 0:53
- **Total (Bundler+PMVS2):** 1:39
- **PhotoModel3D:** 2:03

11 images, On an unloaded notebook (Intel Core 2 Duo 2.8GHz, 4G RAM) – only one core is used, no GPU acceleration
Comparison with Bundler + PMVS2

- **Bundler (Version 0.4, April 10, 2010):** 1:25
- **PMVS2 (July 13, 2010):** 1:53
- **Total (Bundler+PMVS2):** 3:18
- **PhotoModel3D:** 2:46

19 images: On an unloaded notebook (Intel Core 2 Duo 2.8GHz, 4G RAM) – only one core is used, no GPU acceleration
Comparison with Bundler + PMVS2

- Bundler (Version 0.4, April 10, 2010): 3:00
- PMVS2 (July 13, 2010): 4:24
- Total (Bundler+PMVS2): 7:24
- PhotoModel3D: 10:03

24 images: On an unloaded notebook (Intel Core 2 Duo 2.8GHz, 4G RAM) – only one core is used, no GPU acceleration
Bundler + PMVS2

PhotoModel3D

MeshLab v1.2.3 - [pmvs_options.txt.ply]

MeshLab v1.2.3 - [mesh.7.ply]
Comparison with Bundler + PMVS2

- Bundler (Version 0.4, April 10, 2010): 1:32
- PMVS2 (July 13, 2010): 0:24
- Total (Bundler+PMVS2): 1:56
- PhotoModel3D: 4:39

16 images: On an unloaded notebook (Intel Core 2 Duo 2.8GHz, 4G RAM) – only one core is used, no GPU acceleration
“Photo Scenes” – Automated 3D models from digital photos (sans Visualsize, the only such 3D product in the world)

- Technologies acquired from Realviz (on May, 2008)
- RealViz (founded in 1998) technology transfer from INRIA (the ROBOTVIS research group headed by Dr. Olivier Faugeras)
- Public release 7/22/2010 (after 12 years of R&D)
- 52 data sets
 - Faces/non-faces
 - Soft/hard objects
 - Shining/dull appearances
 - Fuzzy/smooth surfaces
 - Etc.
PhotoModel3D consistently (52 out of 52 sets) produces denser, visually accurate results.

Left (blue): photofly
Right (black): PhotoModel3D
3D inference (SLAM vs. Modeling)

- **CV + CG**
 - Structure from motion
 - Discrete snapshots
 - Matching
 - SBA
 - Off-line
 - Batch
 - Dense maps

- **Robotics**
 - SLAM – simultaneous localization and mapping
 - Continuous video
 - Tracking
 - Extended Kalman Filter
 - On-line
 - Incremental
 - Sparse maps
Failure Cases

- Plain, texture-less surfaces
- Shining, transparent, translucent surfaces
- Deformable and moving objects
Failure Cases?
Metrology

- Automated camera motion analysis
- User-specified structure analysis
 - What do you want to measure?
- A single “reference” dimension must be known
- Useful for
 - Home improvement
 - Contracting
 - Cost estimation
 - Insurance damage claim
Metrology Engine
Comparison (competitor) Study

♦ Caveat:
 • Old programs (two years back)
 • Use only 2 images (without global optimization)

♦ Against
 • iWitness (http://www.iwitnessphoto.com/)
 • Pixdim (http://www.pixdim.com/)
 • Both competitors use “marker-based” registration system
Comparison (competitor) Study

- Six un-calibrated consumer-market digital cameras
- 42 image pairs
- One reference of a known dimension per pair
- Over 200 line segments of varying lengths, positions, and orientations
 - Ground truth measured manually
 - Image locations measured using GUI of these packages
 - Average metrology error
 - 2.27% Visualsize
 - 20.62% iWitness
 - 33.03% Pixdim
<table>
<thead>
<tr>
<th>Data sets for Metrology Accuracy Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
</tr>
<tr>
<td>Data6-11</td>
</tr>
<tr>
<td>Data16</td>
</tr>
<tr>
<td>Data19</td>
</tr>
</tbody>
</table>
Data sets for Metrology Accuracy Comparison

Data22

Data23

Data24

Data25

Data26

Data29, 30

Data31

Data32

Data33
Recap

- A suite of 3D algorithms for
 - Navigation and browsing of photos
 - 3D Metrology
 - Panorama
 - 3D Models

- Developed in-house and hold IPs
 - Bundler uses SIFT, LM, SBA, ANN with GNU GPL – not for commercial use
 - Furukawa’s PMVS – again GNU GPL

- One stop shopping for 3D technologies
- Complete systems, end-to-end and fully automated

- World-class
 - Compared favorably with Microsoft/U Wash and Autodesk
 - Exhaustive Web search (“3D models from photos, 3D faces from photos”) unearthed no other worthy competitors
Potential Applications

- Internet showroom and web sales
- Social networks
- Entertainment (movie and game) environment map, FX
- Virtual tourism and museums
- Insurance claim processing
- Crime scene analysis
- Realistic event simulation, surveillance
- Situation study, threat assessment, campaign planning
- Construction (roofing, floor, etc.) and home improvement (remodeling)
- Urban development, city planning
- 3D digital cameras, other hardware solutions
Specific Example: 3D face models

- Human nature: fascination with faces
- 10 to 20 images, point-shoot-upload
- <5 minutes from start to finish (1CPU core, no hardware acceleration)
- No pre-existing “fake” 3D face model to introduce artificial bias in 3D structure
- No active mechanism used
- Internet games
- Plastic surgery
- Telephony
- Social networks
- Security surveillance
Comparison (Competitor) Study

Facegen.com, FaceShop, quidam, thatsmyface.com, looxis.com

- Manual face editing and animation programs
- “Faking” 3D structure
 - texture mapping on existing 3D models, using manually entered fiducial points

PhotoModel3D
- Real texture and structure
- No underlying model is used
- No bias
- Fast (<5 minutes)
- Not $299 :-)

Bias

Introducing FaceGen Modeller PhotoFit
Comparison (Competitor) Study

- Inspeck.com, looxis.com
- Active projection systems
- Multiple projectors for full head capture
- Expensive, time consuming registration & calibration
Comparison (Competitor) Study

- **Mova.com (contour capture)**
 - Phosphorescent makeup and dye (90-120fps flash)
 - Capture both bright and dark frames
 - Random phosphorescent patterns from multiple cameras for triangulation
Comparison (competitor) Study

- **Photomodel3D**
 - Any single consumer-market digital camera
 - No markers
 - 18,761 points (dad)
 - 23,854 points (mom)
 - 30,404 points (daughter)
Face Detection and Recognition

- 2D, Frontal views
- Learning and training often necessary
Embedded Applications

State of the art
- Face detection
- Hit-and-miss (mostly misses 😊)
- Another auto-focusing solution
- Not recorded in images/headers
- Not used for recognition, search, categorization later
- Little improved experience
- No tangible byproducts, very limited enhanced experience (do you know/care your camera’s autofocus mechanism?)

New possibility
- Face model
- Tangible byproducts, 3D face models for
 - Social networking
 - Internet games
 - Baby pictures in 3D
 - Fancy screen saver
Animation

♦ Our 3D face model is a snapshot, but it is ready to be animated (aka talking head)

♦ Concrete applications:
 • Voicemail: has messages read to you by caller’s avatar (transcription, text-to-speech, face animation)
 • Teleconference over cell phones: pre-stored 3D face model of the caller
 • IM: has typed text messages read to you by caller’s avatar

Visual size:
- Low bandwidth, low realism
- Voice only
- Voice + Animated *caller’s* head
- Voice + Animated *generic* head
- High bandwidth, high realism
- Voice + streaming video

Low bandwidth, low realism
High bandwidth, high realism
PERSONALIZATION IS THE KEY

- A talking head you don’t even know is “gee-whiz”
- Personalized avatar provides the needed emotional connection to make technologies desirable
 - A child will get tired talking to an unknown avatar, but not to her parents
 - Teleconference with an unknown talking head provides little enhancement in user experience
- Inexpensive, consumer-market enabling 3D modeling technology
 - Consumer-market camera, efficient and robust solution
 - Only company with such face-modeling ability
Security Surveillance

State of the art

- Well-controlled environment:
 - 2D
 - Frontal
 - Learning and training
 - Preprocessing, cropping, normalization, etc. may be necessary
 - Logic extensions: moderately controlled and un-controlled (Gang Hua, et. al, IEEE PAMI special issue on Real-World Face Recognition)

New possibility

- 3D
- Not necessarily frontal
- No offline learning
- No manual interaction
- A stable, forward projection process instead of unstable, inverse prediction process
Significantly More Examples at

www.visualsize.com